Chapter 3 - Connectivity - 2-Connected Graphs

Recall: A graph G is called k-connected (for $k \in \mathbb{N}$) if |G| > k and G - X is connected for every set $X \subseteq V$ with |X| < k. Largest k such that G is k-connected is called **connectivity** of G, denoted $\kappa(G)$.

Notice $\kappa(K_n) = n - 1$.

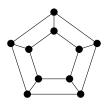
Goals:

Describe structure and/or construction of 2- and 3-connected graphs. Show that in a k-connected graph every 2 vertices are connected by k internally disjoint paths.

Let G be a graph and H_1 and H_2 be a subgraphs of G. An H_1 - H_2 path is a path with one endpoint in H_1 and the other in H_2 but edge disjoint with H_1 and H_2 . If $H_1 = H_2$, we call it H_1 -path

Proposition (Ear decomposition) A graph is 2-connected if and only if it can be constructed from a cycle by successively adding H-paths to graphs H already constructed.

1: Show how the C_5 -prism graph can be constructed in this way.



2: Show that every graph constructed this way is 2-connected.

Solution: Induction on the number of ears. Cycle is 2-connected. If we add an ear to a 2-connected graph, it is still 2-connected. One needs to check cases of removing one vertex.

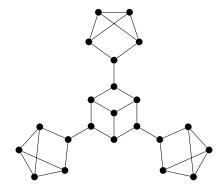
3: Show the every 2-connected graph can be constructed as in the proposition.

If G is 2-connected, it has a cycle (why?). Take the largest subgraph H of G that can be created by the construction. Show H is induced. How to find a new H-path?

Solution: If H is not induced then any edge e that is missing to H being induced is and H-path. So H is induced.

Next if H is an induced proper subgraph, there exists $uv \in E(G)$ such that $u \in V(H)$ and $v \notin V(H)$. Since G is 2-connected, there is a v-H path P. Notice that uP is an H-path contradicting the maximality of H. A **block** in G is a maximal connected subgraph without a cutvertex. Hence block is either 2-connected or a bridge.

4: Identify blocks in the following graph.



5: Show that if B_1 and B_2 are blocks of G, then $|V(B_1) \cap V(B_2)| \le 1$.

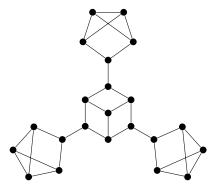
Solution: Suppose for contradiction $u, v \in V(B_1) \cap V(B_2)$. Let $H = G[V(B_1) \cup V(B_2)]$. Since $B_i - x$ is connected for all $x \in V(B_i)$, there exists a path from any vertex of H to $y \in \{u, v\} \setminus \{x\}$ in H - x. So H - x is connected. Therefore, H is a block. This is a contradiction to B_1 and B_2 being blocks.

6: Show that if B_1 and B_2 are blocks of G and $v \in V(B_1) \cap V(B_2)$, then v is a cut vertex in G.

Solution: If G - v has $V(B_1)$ and $V(B_2)$ in the same component, then we would get a contradiction with maximality by taking $V(B_1)$, $V(B_2)$, and $B_1 - B_2$ path in G - v.

The **block graph** of G is the bipartite graph with the set of cut vertices of G and the set of blocks of G as its two parts, and vB is an edge if the cut vertex v is in block B.

7: Create a block graph of this graph.



8: Show that the block graph of a connected graph is a tree.

Solution: If it contained a cycle, it would contradict the maximality of blocks.

Two paths are internally disjoint if they do not have any vertices of degree 2 in common.

Theorem (Whitney 1932) A graph G on $n \ge 3$ vertices is 2-connected if and only if for each pair $u, v \in V(G)$ there exist two internally disjoint u - v paths.

9: Prove the theorem by induction on distance of u and v. What if u and v are adjacent? If u and v are not adjacent, consider w, which is the neighbor of v on a shortest u-v path and use induction on u, w instead.

Solution: If $uv \in E(G)$, there is u-v path P in G - uv. Now P and uv form the two internally disjoint paths.

For w case, there are internally disjoint u-w paths P_1 and P_2 . If $v \in P_1$, then we take subpath u-v of P_1 and add edge vw to P_2 and we are have the two paths we were looking for.

Now we are in the case that neither P_1 nor P_2 contain v. Consider a u-v path P in G - w. Let x be the vertex on $(P_1 \cup P_2) \cap P$ such that there is no x-v part of P does not contain other vertices in $P_1 \cup P_2$. Why x exists? By symmetry, $x \in P_1$. We find the two desired paths as $P_2 + wv$ and a path u-x following P_1 concatenated with x-v path following P. Here figure is really needed.

Lemma (Expansion Lemma) Let G be a graph and G' be the graph obtained from G by adding a new vertex v with at least k neighbors in G. If G is k-connected, then G' is k-connected.

10: Prove the expansion lemma. Consider a separating set S in G' and how it interacts with v and N(v).

Solution: Let S be a minimum separating set of G. If $v \in S$, then $S = \{v\}$ is a separating set of G. This implies $|S| \ge k + 1$. If $v \notin S$ and $N(v) \subseteq S$, then $|S| \ge k$. If v and N(v) are in the same component of G' - S, then S is a separating set of G. So $|S| \ge k$. Therefore, G' is k-connected.

Theorem If G is a graph on $n \ge 3$ vertices the following are equivalent:

- a) G is 2-connected.
- b) For all $u, v \in V(G)$, there are two internally disjoint u-v paths.
- c) For all $u, v \in V(G)$, there is a cycle containing u and v.
- d) Every pair of edges in G are in a common cycle and $\delta(G) \ge 2$.

Proof Its already been shown that a) \Leftrightarrow b). It is obvious that b) \Leftrightarrow c).

11: Assume d). Show c)

Solution: Let $u, v \in V(G)$. Since, $\delta(G) \geq 2$, there exist vertices $x, y \in V(G) \setminus \{u, v\}$ such that ux and vy are edges. By d) exists a cycle with ux and vy, which is a cycle containing both u and v.

12: Assume a) and show d). Use the expansion lemma to find a cycle through two given edges.

Solution: Since G is 2-connected, $\delta(G) \geq 2$. Let $uv, xy \in E(G)$. Create the graph G' by adding new vertices w and z such that $N(w) = \{u, v\}$ and $N(z) = \{x, y\}$. By the Expansion Lemma, G' is 2-connected also. Therefore, there is a cycle containing w and z. By replacing u, w, v and x, z, y on the cycle with u, v and x, y, respectively, a cycle for G is created.